Friday, December 24, 2010

Computer Graphics

Computer graphics
The development of computer graphics, has made computers easier to interact with, and better for understanding and interpreting many types of data. Developments in computer graphics have had a profound impact on many types of media and have revolutionized animation, movies and the video game industry.
Contents


* 1 Overview
* 2 Initial Development of Computer Graphics
* 3 Image types
o 3.1 2D computer graphics
+ 3.1.1 Pixel art
+ 3.1.2 Vector graphics
o 3.2 3D computer graphics
o 3.3 Computer animation
* 4 Concepts and principles
o 4.1 Pixel
o 4.2 Graphics
o 4.3 Rendering
o 4.4 Volume rendering
o 4.5 3D modeling
* 5 Pioneers in graphic design
* 6 The study of computer graphics
* 7 Applications
* 8 References
* 9 Further reading
* 10 External links
Overview

The term computer graphics has been used in a broad sense to describe "almost everything on computers that is not text or sound".[1] Typically, the term computer graphics refers to several different things:

* the representation and manipulation of image data by a computer
* the various technologies used to create and manipulate images
* the images so produced, and
* the sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content, see study of computer graphics

Today, computers and computer-generated images touch many aspects of daily life. Computer imagery is found on television, in newspapers, for example in weather reports, or for example in all kinds of medical investigation and surgical procedures. A well-constructed graph can present complex statistics in a form that is easier to understand and interpret. In the media "such graphs are used to illustrate papers, reports, thesis", and other presentation material.[2]

Many powerful tools have been developed to visualize data. Computer generated imagery can be categorized into several different types: 2D, 3D, 5D, and animated graphics. As technology has improved, 3D computer graphics have become more common, but 2D computer graphics are still widely used. Computer graphics has emerged as a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Over the past decade, other specialized fields have been developed like information visualization, and scientific visualization more concerned with "the visualization of three dimensional phenomena (architectural, meteorological, medical, biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces, illumination sources, and so forth, perhaps with a dynamic (time) component".[3]
[edit] Initial Development of Computer Graphics

The advance in computer graphics was to come from one MIT student, Ivan Sutherland. In 1961 Sutherland created another computer drawing program called Sketchpad. Using a light pen, Sketchpad allowed one to draw simple shapes on the computer screen, save them and even recall them later. The light pen itself had a small photoelectric cell in its tip. This cell emitted an electronic pulse whenever it was placed in front of a computer screen and the screen's electron gun fired directly at it. By simply timing the electronic pulse with the current location of the electron gun, it was easy to pinpoint exactly where the pen was on the screen at any given moment. Once that was determined, the computer could then draw a cursor at that location.

Sutherland seemed to find the perfect solution for many of the graphics problems he faced. Even today, many standards of computer graphics interfaces got their start with this early Sketchpad program. One example of this is in drawing constraints. If one wants to draw a square for example, s/he doesn't have to worry about drawing four lines perfectly to form the edges of the box. One can simply specify that s/he wants to draw a box, and then specify the location and size of the box. The software will then construct a perfect box, with the right dimensions and at the right location. Another example is that Sutherland's software modeled objects - not just a picture of objects. In other words, with a model of a car, one could change the size of the tires without affecting the rest of the car. It could stretch the body of the car without deforming the tires.

These early computer graphics were Vector graphics, composed of thin lines whereas modern day graphics are Raster based using pixels. The difference between vector graphics and raster graphics can be illustrated with a shipwrecked sailor. He creates an SOS sign in the sand by arranging rocks in the shape of the letters "SOS." He also has some brightly colored rope, with which he makes a second "SOS" sign by arranging the rope in the shapes of the letters. The rock SOS sign is similar to raster graphics. Every pixel has to be individually accounted for. The rope SOS sign is equivalent to vector graphics. The computer simply sets the starting point and ending point for the line and perhaps bend it a little between the two end points. The disadvantages to vector files are that they cannot represent continuous tone images and they are limited in the number of colors available. Raster formats on the other hand work well for continuous tone images and can reproduce as many colors as needed.

Also in 1961 another student at MIT, Steve Russell, created the first video game, Spacewar. Written for the DEC PDP-1, Spacewar was an instant success and copies started flowing to other PDP-1 owners and eventually even DEC got a copy. The engineers at DEC used it as a diagnostic program on every new PDP-1 before shipping it. The sales force picked up on this quickly enough and when installing new units, would run the world's first video game for their new customers.

E. E. Zajac, a scientist at Bell Telephone Laboratory (BTL), created a film called "Simulation of a two-giro gravity attitude control system" in 1963. In this computer generated film, Zajac showed how the attitude of a satellite could be altered as it orbits the Earth. He created the animation on an IBM 7090 mainframe computer. Also at BTL, Ken Knowlton, Frank Sindon and Michael Noll started working in the computer graphics field. Sindon created a film called Force, Mass and Motion illustrating Newton's laws of motion in operation. Around the same time, other scientists were creating computer graphics to illustrate their research. At Lawrence Radiation Laboratory, Nelson Max created the films, "Flow of a Viscous Fluid" and "Propagation of Shock Waves in a Solid Form." Boeing Aircraft created a film called "Vibration of an Aircraft."

It wasn't long before major corporations started taking an interest in computer graphics. TRW, Lockheed-Georgia, General Electric and Sperry Rand are among the many companies that were getting started in computer graphics by the mid 1960's. IBM was quick to respond to this interest by releasing the IBM 2250 graphics terminal, the first commercially available graphics computer.

Ralph Baer, a supervising engineer at Sanders Associates, came up with a home video game in 1966 that was later licensed to Magnavox and called the Odyssey. While very simplistic, and requiring fairly inexpensive electronic parts, it allowed the player to move points of light around on a screen. It was the first consumer computer graphics product.

Also in 1966, Sutherland at MIT invented the first computer controlled head-mounted display (HMD). Called the Sword of Damocles because of the hardware required for support, it displayed two separate wireframe images, one for each eye. This allowed the viewer to see the computer scene in stereoscopic 3D. After receiving his Ph.D. from MIT, Sutherland became Director of Information Processing at ARPA (Advanced Research Projects Agency), and later became a professor at Harvard.

Dave Evans was director of engineering at Bendix Corporation's computer division from 1953 to 1962, after which he worked for the next five years as a visiting professor at Berkeley. There he continued his interest in computers and how they interfaced with people. In 1968 the University of Utah recruited Evans to form a computer science program, and computer graphics quickly became his primary interest. This new department would become the world's primary research center for computer graphics.

In 1967 Sutherland was recruited by Evans to join the computer science program at the University of Utah. There he perfected his HMD. Twenty years later, NASA would re-discover his techniques in their virtual reality research. At Utah, Sutherland and Evans were highly sought after consultants by large companies but they were frustrated at the lack of graphics hardware available at the time so they started formulating a plan to start their own company.

A student by the name of Edwin Catmull started at the University of Utah in 1970 and signed up for Sutherland's computer graphics class. Catmull had just come from The Boeing Company and had been working on his degree in physics. Growing up on Disney, Catmull loved animation yet quickly discovered that he didn't have the talent for drawing. Now Catmull (along with many others) saw computers as the natural progression of animation and they wanted to be part of the revolution. The first animation that Catmull saw was his own. He created an animation of his hand opening and closing. It became one of his goals to produce a feature length motion picture using computer graphics. In the same class, Fred Parke created an animation of his wife's face. Because of Evan's and Sutherland's presence, UU was gaining quite a reputation as the place to be for computer graphics research so Catmull went there to learn 3D animation.

As the UU computer graphics laboratory was attracting people from all over, John Warnock was one of those early pioneers; he would later found Adobe Systems and create a revolution in the publishing world with his PostScript page description language. Tom Stockham led the image processing group at UU which worked closely with the computer graphics lab. Jim Clark was also there; he would later found Silicon Graphics, Inc.

The first major advance in 3D computer graphics was created at UU by these early pioneers, the hidden-surface algorithm. In order to draw a representation of a 3D object on the screen, the computer must determine which surfaces are "behind" the object from the viewer's perspective, and thus should be "hidden" when the computer creates (or renders) the image.
 Image types
 2D computer graphics
Raster graphic sprites (left) and masks (right)

2D computer graphics are the computer-based generation of digital images—mostly from two-dimensional models, such as 2D geometric models, text, and digital images, and by techniques specific to them.

2D computer graphics are mainly used in applications that were originally developed upon traditional printing and drawing technologies, such as typography, cartography, technical drawing, advertising, etc.. In those applications, the two-dimensional image is not just a representation of a real-world object, but an independent artifact with added semantic value; two-dimensional models are therefore preferred, because they give more direct control of the image than 3D computer graphics, whose approach is more akin to photography than to typography.
[edit] Pixel art

Pixel art is a form of digital art, created through the use of raster graphics software, where images are edited on the pixel level. Graphics in most old (or relatively limited) computer and video games, graphing calculator games, and many mobile phone games are mostly pixel art.
[edit] Vector graphics
Example showing effect of vector graphics versus raster (bitmap) graphics.

Vector graphics formats are complementary to raster graphics, which is the representation of images as an array of pixels, as it is typically used for the representation of photographic images.[4] There are instances when working with vector tools and formats is best practice, and instances when working with raster tools and formats is best practice. There are times when both formats come together. An understanding of the advantages and limitations of each technology and the relationship between them is most likely to result in efficient and effective use of tools.
[edit] 3D computer graphics

3D computer graphics in contrast to 2D computer graphics are graphics that use a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering 2D images. Such images may be for later display or for real-time viewing.

Despite these differences, 3D computer graphics rely on many of the same algorithms as 2D computer vector graphics in the wire frame model and 2D computer raster graphics in the final rendered display. In computer graphics software, the distinction between 2D and 3D is occasionally blurred; 2D applications may use 3D techniques to achieve effects such as lighting, and primarily 3D may use 2D rendering techniques.

3D computer graphics are often referred to as 3D models. Apart from the rendered graphic, the model is contained within the graphical data file. However, there are differences. A 3D model is the mathematical representation of any three-dimensional object. A model is not technically a graphic until it is visually displayed. Due to 3D printing, 3D models are not confined to virtual space. A model can be displayed visually as a two-dimensional image through a process called 3D rendering, or used in non-graphical computer simulations and calculations. There are some 3D computer graphics software for users to create 3D images.
Computer animation
An example of Computer animation produced using Motion capture

Computer animation is the art of creating moving images via the use of computers. It is a subfield of computer graphics and animation. Increasingly it is created by means of 3D computer graphics, though 2D computer graphics are still widely used for stylistic, low bandwidth, and faster real-time rendering needs. Sometimes the target of the animation is the computer itself, but sometimes the target is another medium, such as film. It is also referred to as CGI (Computer-generated imagery or computer-generated imaging), especially when used in films.

Virtual entities may contain and be controlled by assorted attributes, such as transform values (location, orientation, and scale) stored in an object's transformation matrix. Animation is the change of an attribute over time. Multiple methods of achieving animation exist; the rudimentary form is based on the creation and editing of keyframes, each storing a value at a given time, per attribute to be animated. The 2D/3D graphics software will interpolate between keyframes, creating an editable curve of a value mapped over time, resulting in animation. Other methods of animation include procedural and expression-based techniques: the former consolidates related elements of animated entities into sets of attributes, useful for creating particle effects and crowd simulations; the latter allows an evaluated result returned from a user-defined logical expression, coupled with mathematics, to automate animation in a predictable way (convenient for controlling bone behavior beyond what a hierarchy offers in skeletal system set up).

To create the illusion of movement, an image is displayed on the computer screen then quickly replaced by a new image that is similar to the previous image, but shifted slightly. This technique is identical to the illusion of movement in television and motion pictures.
[edit] Concepts and principles

Images are typically produced by optical devices;such as cameras, mirrors, lenses, telescopes, microscopes, etc. and natural objects and phenomena, such as the human eye or water surfaces.

A digital image is a representation of a two-dimensional image in binary format as a sequence of ones and zeros. Digital images include both vector images and raster images, but raster images are more commonly used.
[edit] Pixel
In the enlarged portion of the image individual pixels are rendered as squares and can be easily seen.

In digital imaging, a pixel (or picture element[5]) is a single point in a raster image. Pixels are normally arranged in a regular 2-dimensional grid, and are often represented using dots or squares. Each pixel is a sample of an original image, where more samples typically provide a more accurate representation of the original. The intensity of each pixel is variable; in color systems, each pixel has typically three components such as red, green, and blue.
[edit] Graphics

Graphics are visual presentations on some surface, such as a wall, canvas, computer screen, paper, or stone to brand, inform, illustrate, or entertain. Examples are photographs, drawings, line art, graphs, diagrams, typography, numbers, symbols, geometric designs, maps, engineering drawings, or other images. Graphics often combine text, illustration, and color. Graphic design may consist of the deliberate selection, creation, or arrangement of typography alone, as in a brochure, flier, poster, web site, or book without any other element. Clarity or effective communication may be the objective, association with other cultural elements may be sought, or merely, the creation of a distinctive style.
Arambilet: Dots on the I's, D-ART 2009 Online Digital Art Gallery, exhibited at IV09 and CG09 computer Graphics conferences, at Pompeu Fabra University, Barcelona; Tianjin University, China; Permanent Exhibition at the London South Bank University
[edit] Rendering

Rendering is the process of generating an image from a model (or models in what collectively could be called a scene file), by means of computer programs. A scene file contains objects in a strictly defined language or data structure; it would contain geometry, viewpoint, texture, lighting, and shading information as a description of the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The rendering program is usually built into the computer graphics software, though others are available as plug-ins or entirely separate programs. The term "rendering" may be by analogy with an "artist's rendering" of a scene. Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image from a 3D representation stored in a scene file are outlined as the graphics pipeline along a rendering device, such as a GPU. A GPU is a purpose-built device able to assist a CPU in performing complex rendering calculations. If a scene is to look relatively realistic and predictable under virtual lighting, the rendering software should solve the rendering equation. The rendering equation doesn't account for all lighting phenomena, but is a general lighting model for computer-generated imagery. 'Rendering' is also used to describe the process of calculating effects in a video editing file to produce final video output.

3D projection
3D projection is a method of mapping three dimensional points to a two dimensional plane. As most current methods for displaying graphical data are based on planar two dimensional media, the use of this type of projection is widespread, especially in computer graphics, engineering and drafting.

Ray tracing
Ray tracing is a technique for generating an image by tracing the path of light through pixels in an image plane. The technique is capable of producing a very high degree of photorealism; usually higher than that of typical scanline rendering methods, but at a greater computational cost.

Shading

Example of shading.

Shading refers to depicting depth in 3D models or illustrations by varying levels of darkness. It is a process used in drawing for depicting levels of darkness on paper by applying media more densely or with a darker shade for darker areas, and less densely or with a lighter shade for lighter areas. There are various techniques of shading including cross hatching where perpendicular lines of varying closeness are drawn in a grid pattern to shade an area. The closer the lines are together, the darker the area appears. Likewise, the farther apart the lines are, the lighter the area appears. The term has been recently generalized to mean that shaders are applied.

Texture mapping
Texture mapping is a method for adding detail, surface texture, or colour to a computer-generated graphic or 3D model. Its application to 3D graphics was pioneered by Dr Edwin Catmull in 1974. A texture map is applied (mapped) to the surface of a shape, or polygon. This process is akin to applying patterned paper to a plain white box. Multitexturing is the use of more than one texture at a time on a polygon.[6] Procedural textures (created from adjusting parameters of an underlying algorithm that produces an output texture), and bitmap textures (created in an image editing application) are, generally speaking, common methods of implementing texture definition from a 3D animation program, while intended placement of textures onto a model's surface often requires a technique known as UV mapping.

Anti-aliasing
Rendering resolution-independent entities (such as 3D models) for viewing on a raster (pixel-based) device such as a LCD display or CRT television inevitably causes aliasing artifacts mostly along geometric edges and the boundaries of texture details; these artifacts are informally called "jaggies". Anti-aliasing methods rectify such problems, resulting in imagery more pleasing to the viewer, but can be somewhat computationally expensive. Various anti-aliasing algorithms (such as supersampling) are able to be employed, then customized for the most efficient rendering performance versus quality of the resultant imagery; a graphics artist should consider this trade-off if anti-aliasing methods are to be used. A pre-anti-aliased bitmap texture being displayed on a screen (or screen location) at a resolution different than the resolution of the texture itself (such as a textured model in the distance from the virtual camera) will exhibit aliasing artifacts, while any procedurally-defined texture will always show aliasing artifacts as they are resolution-independent; techniques such as mipmapping and texture filtering help to solve texture-related aliasing problems.

[edit] Volume rendering
Volume rendered CT scan of a forearm with different colour schemes for muscle, fat, bone, and blood.

Volume rendering is a technique used to display a 2D projection of a 3D discretely sampled data set. A typical 3D data set is a group of 2D slice images acquired by a CT or MRI scanner.

Usually these are acquired in a regular pattern (e.g., one slice every millimeter) and usually have a regular number of image pixels in a regular pattern. This is an example of a regular volumetric grid, with each volume element, or voxel represented by a single value that is obtained by sampling the immediate area surrounding the voxel.
[edit] 3D modeling

3D modeling is the process of developing a mathematical, wireframe representation of any three-dimensional object, called a "3D model", via specialized software. Models may be created automatically or manually; the manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. 3D models may be created using multiple approaches: use of NURBS curves to generate accurate and smooth surface patches, polygonal mesh modeling (manipulation of faceted geometry), or polygonal mesh subdivision (advanced tessellation of polygons, resulting in smooth surfaces similar to NURBS models). A 3D model can be displayed as a two-dimensional image through a process called 3D rendering, used in a computer simulation of physical phenomena, or animated directly for other purposes. The model can also be physically created using 3D Printing devices.
[edit] Pioneers in graphic design

Charles Csuri
Charles Csuri is a pioneer in computer animation and digital fine art and created the first computer art in 1964. Csuri was recognized by Smithsonian as the father of digital art and computer animation, and as a pioneer of computer animation by the Museum of Modern Art (MoMA) and Association for Computing Machinery-SIGGRAPH.

Donald P. Greenberg
Donald P. Greenberg is a leading innovator in computer graphics. Greenberg has authored hundreds of articles and served as a teacher and mentor to many prominent computer graphic artists, animators, and researchers such as Robert L. Cook, Marc Levoy, and Wayne Lytle. Many of his former students have won Academy Awards for technical achievements and several have won the SIGGRAPH Achievement Award. Greenberg was the founding director of the NSF Center for Computer Graphics and Scientific Visualization.

A. Michael Noll
Noll was one of the first researchers to use a digital computer to create artistic patterns and to formalize the use of random processes in the creation of visual arts. He began creating digital computer art in 1962, making him one of the earliest digital computer artists. In 1965, Noll along with Frieder Nake and Georg Nees were the first to publicly exhibit their computer art. During April 1965, the Howard Wise Gallery exhibited Noll's computer art along with random-dot patterns by Bela Julesz.

A modern render of the Utah teapot, an iconic model in 3D computer graphics created by Martin Newell, 1975.

Other pioneers

* Jim Blinn
* Arambilet
* Benoît B. Mandelbrot
* Henri Gouraud
* Bui Tuong Phong
* Pierre Bézier
* Paul de Casteljau
* Daniel J. Sandin
* Alvy Ray Smith
* Ton Roosendaal
* Ivan Sutherland
* Steve Russell

 The study of computer graphics

The study of computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.

As an academic discipline, computer graphics studies the manipulation of visual and geometric information using computational techniques. It focuses on the mathematical and computational foundations of image generation and processing rather than purely aesthetic issues. Computer graphics is often differentiated from the field of visualization, although the two fields have many similarities.
[edit] Applications
Computer graphics portal
Computer Science portal

* Computational biology
* Computational physics
* Computer-aided design
* Computer simulation
* Digital art
* Education
* Graphic design
* Infographics
* Information visualization
* Rational drug design
* Scientific visualization
* Video Games
* Virtual reality
* Web design

[edit] References

1. ^ What is Computer Graphics?, Cornell University Program of Computer Graphics. Last updated 04/15/98. Accessed November 17, 2009.
2. ^ University of Leeds ISS (2002). "What are computer graphics?". Last updated: 22 September 2008
3. ^ Michael Friendly (2008). "Milestones in the history of thematic cartography, statistical graphics, and data visualization".
4. ^ Ira Greenberg (2007). Processing: Creative Coding and Computational Art. Apress. ISBN 159059617X. http://books.google.com/books?id=WTl_7H5HUZAC&pg=PA115&dq=raster+vector+graphics+photographic&lr=&as_brr=0&ei=llOVR5LKCJL0iwGZ8-ywBw&sig=YEjfPOYSUDIf1CUbL5S5Jbzs7M8.
5. ^ Rudolf F. Graf (1999). Modern Dictionary of Electronics. Oxford: Newnes. p. 569. ISBN 0-7506-43315. http://books.google.com/books?id=o2I1JWPpdusC&pg=PA569&dq=pixel+intitle:%22Modern+Dictionary+of+Electronics%22+inauthor:graf&lr=&as_brr=0&ei=5ygASM3qHoSgiwH45-GIDA&sig=7tg-LuGdu6Njypaawi2bbkeq8pw.
6. ^ Blythe, David. Advanced Graphics Programming Techniques Using OpenGL. Siggraph 1999. (see: Multitexture)

Further reading

* James D. Foley, Andries Van Dam, Steven K. Feiner and John F. Hughes (1995). Computer Graphics: Principles and Practice. Addison-Wesley
* Donald Hearn and M. Pauline Baker (1994). Computer Graphics. Prentice-Hall.
* Francis S. Hill (2001). Computer Graphics. Prentice Hall.
* John Lewell (1985). Computer Graphics: A Survey of Current Techniques and Applications. Van Nostrand Reinhold.
* Jeffrey J. McConnell (2006). Computer Graphics: Theory Into Practice. Jones & Bartlett Publishers.
* R. D. Parslow, R. W. Prowse, Richard Elliot Green (1969). Computer Graphics: Techniques and Applications.
* Peter Shirley and others. (2005). Fundamentals of computer graphics. A.K. Peters, Ltd.
* M. Slater, A. Steed, Y. Chrysantho (2002). Computer graphics and virtual environments: from realism to real-time. Addison-Wesley

source http://en.wikipedia.org/wiki/Computer_graphics

Tuesday, December 21, 2010

computer networks

Introduction

A computer network allows sharing of resources and information among interconnected devices. In the 1960s, the Advanced Research Projects Agency (ARPA) started funding the design of the Advanced Research Projects Agency Network (ARPANET) for the United States Department of Defense. It was the first computer network in the world.[1] Development of the network began in 1969, based on designs developed during the 1960s.
[edit] Purpose

Computer networks can be used for a variety of purposes:

* Facilitating communications. Using a network, people can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing.
* Sharing hardware. In a networked environment, each computer on a network may access and use hardware resources on the network, such as printing a document on a shared network printer.
* Sharing files, data, and information. In a network environment, authorized user may access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.
* Sharing software. Users connected to a network may run application programs on remote computers.
* Information preservation.
* Security.
* Speed up.

[edit] Network classification

The following list presents categories used for classifying networks.
[edit] Connection method

Computer networks can be classified according to the hardware and software technology that is used to interconnect the individual devices in the network, such as optical fiber, Ethernet, wireless LAN, HomePNA, power line communication or G.hn.

Ethernet as it is defined by IEEE 802 utilizes various standards and mediums that enable communication between devices. Frequently deployed devices include hubs, switches, bridges, or routers. Wireless LAN technology is designed to connect devices without wiring. These devices use radio waves or infrared signals as a transmission medium. ITU-T G.hn technology uses existing home wiring (coaxial cable, phone lines and power lines) to create a high-speed (up to 1 Gigabit/s) local area network.
[edit] Wired technologies

* Twisted pair wire is the most widely used medium for telecommunication. Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer networking cabling consist of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 100 million bits per second. Twisted pair cabling comes in two forms which are Unshielded Twisted Pair (UTP) and Shielded twisted-pair (STP) which are rated in categories which are manufactured in different increments for various scenarios.

* Coaxial cable is widely used for cable television systems, office buildings, and other worksites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmission speed range from 200 million to more than 500 million bits per second.

* Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers. It transmits light which can travel over extended distances. Fiber-optic cables are not affected by electromagnetic radiation. Transmission speed may reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than a twisted-pair wire.[citation needed]

[edit] Wireless technologies

* Terrestrial microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment look similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx, 30 miles apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.

* Communications satellites – The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 22,000 miles (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.

* Cellular and PCS systems – Use several radio communications technologies. The systems are divided to different geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.

* Wireless LANs – Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE.

* Infrared communication , which can transmit signals between devices within small distances not more than 10 meters peer to peer or ( face to face ) without any body in the line of transmitting.

[edit] Scale

Networks are often classified as local area network (LAN), wide area network (WAN), metropolitan area network (MAN), personal area network (PAN), virtual private network (VPN), campus area network (CAN), storage area network (SAN), and others, depending on their scale, scope and purpose, e.g., controller area network (CAN) usage, trust level, and access right often differ between these types of networks. LANs tend to be designed for internal use by an organization's internal systems and employees in individual physical locations, such as a building, while WANs may connect physically separate parts of an organization and may include connections to third parties.
[edit] Functional relationship (network architecture)

Computer networks may be classified according to the functional relationships which exist among the elements of the network, e.g., active networking, client–server and peer-to-peer (workgroup) architecture.
[edit] Network topology
Main article: Network topology

Computer networks may be classified according to the network topology upon which the network is based, such as bus network, star network, ring network, mesh network. Network topology is the coordination by which devices in the network are arranged in their logical relations to one another, independent of physical arrangement. Even if networked computers are physically placed in a linear arrangement and are connected to a hub, the network has a star topology, rather than a bus topology. In this regard the visual and operational characteristics of a network are distinct. Networks may be classified based on the method of data used to convey the data, these include digital and analog networks.
[edit] Types of networks based on physical scope

Common types of computer networks may be identified by their scale.
[edit] Local area network

A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as home, school, computer laboratory, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Current wired LANs are most likely to be based on Ethernet technology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines).[2]
Typical library network, in a branching tree topology and controlled access to resources

All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.

The defining characteristics of LANs, in contrast to WANs (Wide Area Networks), include their higher data transfer rates, smaller geographic range, and no need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 40 and 100 Gbit/s.[3]
[edit] Personal area network

A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless devices. The reach of a PAN typically extends to 10 meters.[4] A wired PAN is usually constructed with USB and Firewire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN.
[edit] Home area network

A home area network (HAN) is a residential LAN which is used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a CATV or Digital Subscriber Line (DSL) provider. It can also be referred to as an office area network (OAN).
[edit] Wide area network

A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances, using a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.


[edit] Campus network

A campus network is a computer network made up of an interconnection of local area networks (LAN's) within a limited geographical area. The networking equipments (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling etc.) are almost entirely owned (by the campus tenant / owner: an enterprise, university, government etc.).

In the case of a university campus-based campus network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls.
[edit] Metropolitan area network

A Metropolitan area network is a large computer network that usually spans a city or a large campus.
Sample EPN made of Frame relay WAN connections and dialup remote access.
Sample VPN used to interconnect 3 offices and remote users
[edit] Enterprise private network

An enterprise private network is a network build by an enterprise to interconnect various company sites, e.g., production sites, head offices, remote offices, shops, in order to share computer resources.
Virtual private network
SOURCE  http://en.wikipedia.org/wiki/Computer_network

assembled pc

BM PC compatible computers are those generally similar to the original IBM PC, XT, and AT. Such computers used to be referred to as PC clones, or IBM clones since they almost exactly duplicated all the significant features of the PC architecture, facilitated by various manufacturers' ability to legally reverse engineer the BIOS through clean room design. Columbia Data Products built the first clone of an IBM personal computer through a clean room implementation of its BIOS. Many early IBM PC compatibles used the same computer bus as the original PC and AT models. The IBM AT compatible bus was later named the ISA bus by manufacturers of compatible computers. The term "IBM PC compatible" is now a historical description only since IBM has withdrawn from personal computer sales.

Descendants of the IBM PC compatibles make up the majority of microcomputers on the market today, although interoperability with the bus structure and peripherals of the original PC architecture may be limited or non-existent.
SOURCE http://en.wikipedia.org/wiki/IBM_PC_compatible

laptop

  1. A laptop (also known as a notebook is a personal computer designed for mobile use. A laptop integrates most of the typical components of a desktop computer, including a display, a keyboard, a pointing device (a touchpad, also known as a trackpad, and/or a pointing stick) and speakers into a single unit. A laptop is powered by mains electricity via an AC adapter, and can be used away from an outlet using a rechargeable battery. A laptop battery in new condition typically stores enough energy to run the laptop for three to five hours, depending on the computer usage, configuration and power management settings. When the laptop is plugged into the mains, the battery charges, whether or not the computer is running, with the exception of some laptops.

  2. Portable computers, originally monochrome CRT-based and developing into the modern laptop, were originally considered to be a small niche market, mostly for specialized field applications such as the military, accountants and sales representatives. As portable computers became smaller, lighter, and cheaper and as screens became larger and of better quality, laptops became very widely used for all purposes.
  3. source http://en.wikipedia.org/wiki/Laptop

Wednesday, December 8, 2010

assembled computers

Processor
Processor chips are primarily available in two brands -- INTEL and AMD.  
Add caption
The Intel chips range from the very basic Celeron chip to the Pentium series to the advanced Centrino processor.
AMD has a chip called Athlon, which is slightly cheaper than the higher end Intel chips.
Most users prefer Intel Pentium chips to Athlon as the latter heats up soon and isn't as efficient as a Pentium 4 chip. Also, the Athlon chip based systems need extra fans to cool the system.
The most preferred chip is the Pentium 4 2.4 GHz.
You might want to consider the Athlon chip with the motherboard would cost you about Rs 3,000 less than its INTEL counterpart.
source: http://www.rediff.com/getahead/2005/mar/30comp.htm

computer models

A computer simulation, a computer model, or a computational model is a computer program, or network of computers, that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modeling of many natural systems in physics (computational physics), astrophysics, chemistry and biology, human systems in economics, psychology, social science, and engineering. Simulations can be used to explore and gain new insights into new technology, and to estimate the performance of systems too complex for analytical solutions.
source: http://en.wikipedia.org/wiki/Computer

desktop computers

The first use of the word "computer" was recorded in 1613, referring to a person who carried out calculations, or computations, and the word continued to be used in that sense until the middle of the 20th century. From the end of the 19th century onwards though, the word began to take on its more familiar meaning, describing a machine that carries out computations


computer

A computer is a programmable machine that receives input, stores and manipulates data, and provides output in a useful format.

While a computer can, in theory, be made out of almost anything (see misconceptions section), and mechanical examples of computers have existed through much of recorded human history, the first electronic computers were developed in the mid-20th century . Originally, they were the size of a large room, consuming as much power as several hundred modern personal computers (PCs) Modern computers based on integrated circuits are millions to billions of times more capable than the early machines, and occupy a fraction of the space Simple computers are small enough to fit into mobile devices, and can be powered by a small battery. Personal computers in their various forms are icons of the Information Age and are what most people think of as "computers". However, the embedded computers found in many devices from MP3 players to fighter aircraft and from toys to industrial robots are the most numerous.
source:http://en.wikipedia.org/wiki/Computer